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1
DISTRIBUTED PAGE-TABLE LOOKUPS IN A
SHARED-MEMORY SYSTEM

BACKGROUND

1. Field of the Invention

This disclosure generally relates to techniques for reducing
latency in shared-memory multiprocessor computer systems.
More specifically, this disclosure relates to techniques for
reducing address-translation latency for page-table walks in
shared-memory multiprocessor systems.

2. Related Art

Computer memory is typically divided into a set of fixed-
length blocks called “pages.” An operating system can pro-
vide a virtual memory abstraction to give a program the
impression that it is accessing a contiguous address space that
is larger than the actual available physical memory of the
underlying computer system. During operation, the operating
system and hardware of the computing device translate vir-
tual addresses into physical addresses in the physical
memory. These translated physical addresses are then used to
access the desired data from the memory hierarchy.

The latency caused by such address translation can signifi-
cantly impact the performance of shared-memory server sys-
tems. Accessing a virtual address typically involves using
specialized translation hardware to determine a correspond-
ing memory address. This translation hardware often includes
a translation lookaside buffer (TLB) which caches page-table
translation information to improve the speed of virtual
address translations. Modern processors use multiple levels
of such TLBs to avoid the latency of page-table lookups.
However, growing data-set sizes and an increase in the num-
ber of hardware threads that share a TLB are increasing TLB
pressure, thereby resulting in increased TLB miss rates. In
modern multiprocessor systems, a miss in a multi-level TLB
initiates a page-table walk, which typically involves several
DRAM accesses that can take hundreds of clock cycles to
complete.

Hence, what is needed are system structures and tech-
niques for managing virtual address translations without the
above-described problems of existing techniques.

SUMMARY

The disclosed embodiments provide a system that per-
forms distributed page-table lookups in a shared-memory
multiprocessor system with two or more nodes, where each of
these nodes includes a directory controller that manages a
distinct portion of the system’s address space. During opera-
tion, a first node receives a request for a page-table entry that
is located at a physical address that is managed by the first
node. The first node accesses its directory controller to
retrieve the page-table entry, and then uses the page-table
entry to calculate the physical address for a subsequent page-
table entry. The first node determines the home node (e.g., the
managing node) for this calculated physical address, and
sends a request for the subsequent page-table entry to that
home node.

In some embodiments, performing a page-table walk com-
prises sequentially accessing multiple page-table entries
using distributed page-table lookups. When compared with
anapproach where a centralized requesting node contacts and
pulls page-table data from multiple different nodes, perform-
ing distributed page-table lookups reduces address-transla-
tion latency by reducing the communication overhead for the
page-table walk.
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In some embodiments, the shared-memory multiprocessor
system uses a multi-level page table, and multiple distributed
page-table lookups on different nodes are used to hierarchi-
cally traverse the multi-level page table during a page-table
walk. In alternative embodiments, the shared-memory multi-
processor system uses a hash-based page table, and multiple
distributed page-table lookups on different nodes are used to
sequentially traverse a linked list of page-table entries in the
hash-based page table during a page-table walk.

In some embodiments, the request received by the first
node includes aggregated information from previous page-
table-entry lookups of the page-table walk. Furthermore, in
some embodiments the directory controller of the first node is
configured to add the retrieved page-table entry to this aggre-
gated information and include the aggregated information in
the request that is sent to the home node.

In some embodiments, the subsequent page-table entry is
the last page-table entry needed to complete the page-table
walk. If this is the case, the home node uses the subsequent
page-table entry to perform a virtual-to-physical address
translation for a virtual address that triggered the page-table
walk, and then sends the aggregated page-table entries for the
page-table walk and the virtual-to-physical address transla-
tion to the requesting node that initiated the page-table walk.

In some embodiments, the first node uses calculation hard-
ware in its directory controller and/or a page-table walker to
calculate the subsequent physical address.

In some embodiments, the directory controllers of the
nodes are configured to distinguish address-translation
requests and responses from data coherence transactions.

In some embodiments, accessing the directory controller to
retrieve the page-table entry comprises one or more of: (1)
determining that the page-table entry is being cached by
another node and forwarding the request to that caching node;
and (2) accessing a DRAM in the first node. If the page-table
entry is being cached by another node, the caching node may
be configured to: access the page-table entry from the cache;
use the page-table entry to perform the calculations for the
subsequent physical address; and forward the subsequent
request to the appropriate home node.

BRIEF DESCRIPTION OF THE FIGURES

FIG. 1 illustrates an exemplary architecture of two or more
multi-core processors in a coherent shared-memory multipro-
cessor system in accordance with an embodiment.

FIG. 2 illustrates a cache-coherent shared-memory multi-
processor system with N multi-core processor nodes in accor-
dance with an embodiment.

FIG. 3A illustrates the process of performing a three-level
page-table walk to resolve a virtual-to-physical address trans-
lation that misses in a TLB of a coherent N-node shared-
memory multiprocessor system in accordance with an
embodiment.

FIG. 3B illustrates a timeline for the operations illustrated
in FIG. 3A in accordance with an embodiment.

FIG. 4A illustrates the process of performing a distributed
three-level page-table walk in a cache-coherent shared-
memory multiprocessor system when none of the requested
page-table entries are cached in the nodes of the system in
accordance with an embodiment.

FIG. 4B illustrates a timeline for the operations illustrated
in FIG. 4A in accordance with an embodiment.

FIG. 5A illustrates the process of performing a distributed
three-level page-table walk in a cache-coherent shared-
memory multiprocessor system when one of the requested
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page-table entries is cached in one or more nodes of the
system in accordance with an embodiment.

FIG. 5B illustrates a timeline for the operations illustrated
in FIG. 5A in accordance with an embodiment.

FIG. 6 presents a flow chart that illustrates the process of
performing distributed page-table lookups in a shared-
memory multiprocessor system with two or more nodes in
accordance with an embodiment.

FIG. 7 illustrates a computing environment in accordance
with an embodiment.

DETAILED DESCRIPTION

The following description is presented to enable any per-
son skilled in the art to make and use the invention, and is
provided in the context of a particular application and its
requirements. Various modifications to the disclosed embodi-
ments will be readily apparent to those skilled in the art, and
the general principles defined herein may be applied to other
embodiments and applications without departing from the
spirit and scope of the present invention. Thus, the present
invention is not limited to the embodiments shown, but is to
be accorded the widest scope consistent with the principles
and features disclosed herein.

The data structures and code described in this detailed
description are typically stored on a non-transitory computer-
readable storage medium, which may be any device or non-
transitory medium that can store code and/or data for use by
a computer system. The non-transitory computer-readable
storage medium includes, but is not limited to, volatile
memory, non-volatile memory, magnetic and optical storage
devices such as disk drives, magnetic tape, CDs (compact
discs), DVDs (digital versatile discs or digital video discs), or
other media capable of storing code and/or data now known or
later developed.

The methods and processes described in the detailed
description section can be embodied as code and/or data,
which can be stored in a non-transitory computer-readable
storage medium as described above. When a computer system
reads and executes the code and/or data stored on the non-
transitory computer-readable storage medium, the computer
system performs the methods and processes embodied as data
structures and code and stored within the non-transitory com-
puter-readable storage medium.

Furthermore, the methods and processes described below
can be included in hardware modules. For example, the hard-
ware modules can include, but are not limited to, application-
specific integrated circuit (ASIC) chips, a full-custom imple-
mentation as part of an integrated circuit (or another type of
hardware implementation on an integrated circuit), field-pro-
grammable gate arrays (FPGAs), a dedicated or shared pro-
cessor that executes a particular software module or a piece of
code at a particular time, and/or other programmable-logic
devices now known or later developed. When the hardware
modules are activated, the hardware modules perform the
methods and processes included within the hardware mod-
ules.

1. Pane-Table Walks in Multiprocessor Systems

The latency caused by address translation can significantly
impact the performance of shared-memory multiprocessor
systems. Modern high-performance multiprocessors typi-
cally devote large areas of semiconductor real estate to spe-
cialized hardware structures that cache frequently accessed
data and speed up address translations. For instance, such
specialized hardware structures may include multiple levels
of SRAM (or DRAM) caches and multiple levels of transla-
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tion lookaside buffers (TLBs), which cache page-table trans-
lations to avoid the high latency of page-table walks.

However, TLB performance is unfortunately degrading in
current systems, and seems likely to continue to degrade in
future systems. For instance, growing workload data-set sizes
and ongoing increases in the number of hardware threads that
share a TLB level increase TLB pressure, thereby increasing
TLB miss rates. Furthermore, due to on-chip network and
power limitations, future systems are likely to comprise mul-
tiple “chiplets” (e.g., small, independent chip multiproces-
sors that are combined to form a large-scale logically mono-
lithic multiprocessor) interconnected by high-performance
optical networks. In such designs, a large last-level TLB per
chiplet may not be an effective or achievable solution. For
example, power and area constraints on a chiplet might not
permit a large last-level TLB. Secondly, a large per-chiplet
TLB only enables sharing within a given chiplet. In modern
multiprocessor systems, a miss in a multi-level TLB initiates
a page-table walk, which typically involves several DRAM
accesses to read an often hierarchical page table that stores the
needed virtual-to-physical address mappings; such DRAM
accesses can take hundreds of clock cycles to complete.

Page-table organization often depends on the hardware
architecture and the operating system of a computing device.
For instance, some hardware architectures organize page
tables as multi-level tree-structured tables (e.g., the x86 hard-
ware architecture, which implements multi-level page-table
walks in hardware). In such architectures, an access to a
page-table level returns a page-table entry (PTE) that points
to a memory address in the next page-table level. For
example, in implementations that use a four-level page table,
a TLB miss leads to a page-table walk that sequentially
accesses all four levels of the page table to resolve the virtual
address. Note that implementing page-table walks in hard-
ware often limits the ability of an operating system to manage
page-table structure and lookup techniques.

One exemplary alternative page-table organization imple-
ments a translation storage buffer (TSB) in combination with
an operating-system-managed page table. The operating sys-
tem allocates the TSB as a memory buffer (in main memory)
that serves as a single-level translation cache of recently used
address translations between the TLB and the page table.
More specifically, the TSB acts as one last memory-based
cache of translation information that is checked (e.g., as a last
resort) before incurring the penalty of a full page-table access.
Note that while specialized hardware structures may be used
to search the TSB, the TSB is not a dedicated hardware cache;
while the TSB lookup typically involves a memory access,
this single access is much faster than a full page-table walk.
On a TLB miss, the hardware of the computing device is
configured to first search the TSB and, if the translation is not
found, transfer control (e.g., “trap”) to the operating system to
perform a software page-table walk. In this scenario, because
the actual page-table walk is performed in software, different
operating systems are allowed to organize page tables differ-
ently. For example, one operating system may organize a page
table in software as a multi-level structure (e.g., as in the x86
architecture), while another operating system may implement
a hash-based page table. In a hash-based approach, the hash
table maps a virtual address to a linked list of potential trans-
lations that is then searched sequentially upon a TL.B (and/or
TSB, if included) miss. For instance, in some exemplary
systems the size of the hash table may be chosen based on the
size of physical memory such that, on average, the size of
each linked list is less than a certain number of entries.

Regardless of the specific page-table organization (e.g.,
multi-level, hash-based, etc.) a page-table walk typically per-
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forms multiple sequentially dependent memory accesses to
resolve an address translation. Note that when the preceding
exemplary page-table organizations are considered in the
context of a shared-memory multiprocessor system, the page-
table levels and hash-table buckets are not pinned to any
particular physical location, and thus each access during the
page-table walk may be to a separate physical node in a
distributed system. For example, page-table entries (and/or
levels) may be distributed across the system (or placed in a
particular location), such that a node performing a page-table
walk might not find needed page-table entries in its local
memory. Hence, the overhead of page-table walks in such a
system may be higher, because each level of a page table may
be stored in a remote memory or a remote processor’s cache,
and require a requesting processor to perform several sequen-
tially dependent remote accesses over the coherency inter-
connect to resolve an address translation. Note also that in this
disclosure, each of these accesses is referred to as an access to
a level of a page table, regardless of the page-table organiza-
tion.

FIGS. 1-2 illustrate an exemplary architecture of one or
more multi-core processor nodes 102 in a coherent shared-
memory (COHSHM) multiprocessor system 100. In FIG. 1,
multi-core processor nodes 102 each comprise a chip-multi-
processor and memory, and are interconnected using a coher-
ency network. Nodes 102 can use a range of coherency pro-
tocols (e.g., the MOESI or MESI cache coherence protocols)
to perform remote memory accesses or otherwise communi-
cate.

Multi-core processor nodes 102 illustrate an exemplary
processor architecture in which two or more processor cores
104 each include a core pipeline 106 with a private .1 TLB
110 and L1 cache 108. The processor cores 104 access a
shared lowest-level (e.g., L.2) TLB 114 via a TLB crossbar
112 and access a shared lowest-level (e.g., .2) cache 118 via
a second cache crossbar 116. A TLB controller in TLB 114
can prompt a hardware page-table walker to communicate
with amemory controller (MC) 122 to access page tables in a
shared memory 124 when address translations miss in TLB
114. A directory crossbar 120 facilitates communication with
a directory controller chip and other nodes of the COHSHM
multiprocessor system 100 via a coherency interconnect.
Note that the described concepts are independent of the num-
ber of TLB and cache levels in a processor architecture, and
can be implemented across a range of different processor
architectures. Note also that the described concepts are inde-
pendent of the interconnect topology that is used to connect
the nodes of the coherent shared-memory multiprocessor, and
can be implemented across a range of interconnect types and
topologies.

FIG. 2 illustrates a coherent shared-memory multiproces-
sor system with N multi-core processor nodes. In some
embodiments, each node consists of a processor chip and a
directory chip that includes a cache coherence directory and
directory controller. The physical address space for coherent
shared-memory multiprocessor system 100 can be parti-
tioned among the nodes, with each directory chip serving as
the “home” (e.g., containing a data cache directory (DC
DIR)) for a subset of the physical address space; such an
architecture is often referred to as a “cache-coherent non-
uniform memory access (CC-NUMA) architecture.” The DC
DIR in a node maintains state for every cache line in its
allocated subset that is cached anywhere in the system. A
range of coherence protocols (e.g., the MOESI cache coher-
ence protocol) can be used to maintain cache coherence
across the nodes. Note that the architectures illustrated in
FIGS. 1-2 are exemplary, and that the described techniques
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6

are not limited to the illustrated shared-memory systems; the
described techniques and structures can be applied to a range
of other architectures. For example, the multi-core processor
and directory chip (or even multiple processors and directo-
ries) may be combined into one hardware unit. Other alterna-
tive architectures may include directory chips that are exter-
nal to the node, and/or have a range of different mappings of
physical addresses (or memory pages) to directories and
nodes.

FIG. 3A illustrates the process of performing a three-level
page-table walk to resolve a virtual-to-physical address trans-
lation that misses in a TLB of the coherent N-node shared-
memory multiprocessor system illustrated in FIGS. 1-2. The
example illustrated in FIG. 3A illustrates a scenario where all
PTE accesses miss in the local data caches. In FIG. 3A, Node
0 is the node in which a processor core experiences a TLB
miss, Node 1 stores the portion of the first-level page table
that includes the first-level PTE (PTE1), Node 2 stores the
portion of the second-level page table that includes the sec-
ond-level PTE (PTE2), and Node 3 stores the portion of the
third-level page table that includes the third-level PTE
(PTE3). Note that while these four nodes include the hard-
ware described for FIGS. 1-2, FIG. 3A illustrates only the
components relevant to the page-table walk. Note also that a
page-table-related memory access that misses in a node’s
local cache hierarchy may be forwarded to a remote node in
the same manner as a conventional data cache miss.

During operation, a page-table walker in Node 0 accesses
the PTEs for each page-table level by issuing conventional
memory access instructions to the processor’s cache hierar-
chy. A TLB miss in Node 0 prompts Node 0’s page-table
walker to first check the node’s local cache hierarchy for the
physical address associated with the first-level PTE (opera-
tion 1). If this cache access misses, the request is forwarded to
Node 0’s memory controller, which: (1) determines that this
physical address is remote; (2) determines that Node 1 is the
corresponding home node for the physical address; and (3)
sends a read request to Node 1’s directory controller (opera-
tion 2). Node 1’s directory controller receives the read
request, and checks the directory to determine ifthe address is
cached elsewhere in the system. If not, Node 1’s directory
controller accesses Node 1’s local DRAM for the requested
address (operation 3), and then sends a reply with the
requested PTE back to Node 0’s directory controller (opera-
tion 4). After receiving the level-one PTE, Node 0’s page-
table walker: (1) calculates the physical address of the sec-
ond-level PTE; (2) determines that this physical address
misses in the local data cache hierarchy, and that Node 2 is the
corresponding home node for the physical address; and (3)
issues a new read request for that address to Node 2’s direc-
tory controller (operation 5). Node 2’s directory controller
accesses Node 2’s local DRAM for the requested address
(operation 6), and sends the requested PTE back to Node 0’s
directory controller (operation 7). A substantially similar pro-
cess is then repeated sequentially for the remaining levels of
the page table (e.g., operations 8-10 access a third-level PTE
from athird node, Node 3). Node 0 then uses the final (lowest-
level) PTE to perform the needed virtual-to-physical address
translation. Note that the illustrated lookup operations need to
be sequential, because Node 0’s page-table walker needs to
compute the physical address of each successive level’s PTE
using the most recently received PTE.
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The timeline in FIG. 3B illustrates how the operations
illustrated in FIG. 3A are all on the critical path of a page-
table walk. The total latency on the critical path of the
memory operation is given by:

T priticar™ Lpagetabiewatkert L 1req TDRAMI T L 1respt
Tporeqt Torane Trorespt T 13reqt T DRAMB T L3resp™

cales

agerablewatier 15 the time needed to send TLB miss
requests to Node 0’s local directory controller; T .0, Tr2/e0
and T,,., are the times needed to determine and/or calculate
the address of a PTE and send read requests to the directory
controllers of Nodes 1, 2, and 3, respectively; Tpz ass
T prane> a0d T e 41 - are the times needed for the home nodes
to probe their directories and access their DRAMs to fetch the
requested PTEs; T, 17,05, and Ty, are the times
needed to send the requested PTEs back to Node 0; and T,
is the time needed to calculate the full translation using the
final PTE.

Note that, for clarity, the example illustrated in FIG. 3A
illustrates an “all-DRAM” case that assumes that the
requested PTEs are not cached anywhere in the distributed
system, and need to be fetched from a DRAM. In scenarios
where a requested PTE is cached in another node’s data
cache, the directory controller of the home node may instruct
the caching node to forward the PTE to the requesting node
instead of accessing the PTE from the DRAM.

Embodiments of the present invention seek to reduce page-
table-walk-related coherence-operation latencies by reduc-
ing the number of latency components that are in the critical
path of page-table walks. For instance, the PTE accesses and
address calculations for each of the page-table walk’s levels
can be distributed across the directory controllers of the nodes
involved in a given page-table walk, thereby reducing (or
even sometimes eliminating) intermediate response mes-
sages and improving page-table-walk performance.

2. Distributed Page-Table Lookups

In some embodiments, the nodes of a coherent shared-
memory multiprocessor system are enhanced to facilitate
distributed page-table lookups. For instance, the page-table
walkers and/or directory controllers of the nodes may be
enhanced to calculate the address of the PTE of the next level
of a page table and forward translation requests to other
remote nodes, thereby eliminating the need to centralize each
page-table-walk operation at the requesting node. These tech-
niques may involve (1) augmenting each directory controller
with hardware that can perform an address calculation to
determine the address of the PTE for the next page-table level;
and/or (2) extending each node’s directory controller to
aggregate and forward higher-level PTEs and resolved trans-
lations for the current page-table walk to the requesting node,
so that the requesting node can cache that information for
future translations and page-table walks. The directory con-
trollers may also be modified to support additional intercon-
nect message types that distinguish address-translation
requests and responses from data coherence transactions.
Distributed page-table-lookup techniques reduce address-
translation latency by reducing the number of messages that
are sent between nodes during a page-table walk, thereby
improving performance.

FIG. 4A illustrates the process of performing a distributed
three-level page-table walk across the relevant nodes of a
CC-NUMA multiprocessor system. As in FIG. 3A, the
example of FIG. 4A illustrates an all-DRAM case where none
of'the requested PTEs is currently cached in any of the nodes
of' the distributed system. Also, as in FIG. 3A, FIG. 4A illus-
trates only the components relevant to the page-table walk.

where: T
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During operation, a TLB miss in Node 0 prompts Node 0’s
page-table walker to request a read from Node 0’s local
directory controller for the physical address associated with
the required first-level PTE (operation 1). As in FIG. 3A,
Node 0’s directory controller determines the home node
(Node 1) for the first-level PTE (PTE1), but now sends a
‘distributed page-table-walk’ request message (whose con-
tents are described in more detail below) to Node 1 (operation
2). Node 1’s directory controller accesses its DRAM for the
requested address (operation 3), and Node 1’s directory con-
troller uses PTE1 to calculate the physical address of the
second-level PTE (PTE2) and then sends a “distributed page-
table-walk’ request to the home node for PTE2, Node 2 (op-
eration 4). Node 2’s directory controller accesses its DRAM
for the requested address (operation 5), calculates the third-
level PTE’s (PTE3) physical address, and upon determining
that Node 3 is the home node for PTE3, sends a ‘distributed
page-table-walk’ request to Node 3 (operation 6). Node 3’s
directory controller retrieves PTE3 from its DRAM (opera-
tion 7), calculates the final address translation, and then sends
a ‘completed distributed page-table walk’ message. Note that
in some embodiments, as each stage of the distributed page-
table walk is completed, the PTEs retrieved from DRAM are
aggregated and forwarded to the next node in the chain, and
the directory controllers on each intermediary home node
mark the requesting node as a sharer for the system cache
lines that contain each PTE. Hence, in such embodiments, the
requesting node receives all levels of PTEs, which allows the
requesting node to cache these PTEs locally (as it would in the
non-distributed page-table walk illustrated in FIG. 3A).

The timeline in FIG. 4B illustrates how distributed page-
table walk techniques shorten the critical path of a page-table
walk by eliminating two interconnect latency components.
The total latency on the critical path of the memory operation
is given by:

T, riticar™ Lpagetaiewatkert T L1reqt DR AMIT T L2req
Tprareet 13reat T orart T2a_resp

The disclosed techniques can save n-1 messages for an n-level
page-table walk, while also eliminating n-1 data cache hier-
archy accesses on the requesting node; note that the data
cache hierarchy accesses are not shown in the equations or
figures. Given the long message latencies of switched inter-
connects in shared memory systems, eliminating messages
that return intermediate PTEs to the requesting node from the
critical path can save hundreds of clock cycles. Note that
these performance benefits are possible without substantially
changing PTE access patterns; more specifically, the same
nodes are still accessed, but each node performs a small
amount of additional computation instead of sending the
requested PTE back to the requesting node.

Note that in some embodiments the disclosed techniques
can further reduce translation latency. For instance, for the
page-table walk described in FIG. 3 A, a requesting node may
probe its local cache at each level of the page-table walk (e.g.,
every time it computes a PTE address for a subsequent page-
table level, before sending the request on to the directory
controller of the next home node). In contrast, in some
embodiments, distributed page-table walk techniques may
directly send requests to a PTE’s home node instead of prob-
ing local caches. The benefits of reducing the number of cache
probes are often smaller than the benefits of reducing the
number of inter-node messages, but do further improve
address translation performance.

FIG. 5A illustrates a distributed three-level page-table
walk for an alternative scenario in which one of the PTEs for
the page-table walk is cached in one or more nodes of the
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CC-NUMA multiprocessor system. The home node directory
for a given PTE’s physical address tracks whether that PTE is
cached anywhere in the system. Upon receiving a request for
a PTE, the home node probes its directory, and if the
requested PTE is in the data cache of a node in the system,
forwards the ‘distributed page-table-walk’ message to the
caching node’s directory controller. The caching node’s
directory controller can then retrieve the cached PTE from its
local data cache, calculate the next level PTE’s physical
address, and forward the ‘distributed page-table-walk’
request to the next node in the chain (as described for FIG.
4A). For example, in FIG. 5A, Node 1 accesses PTE1 from
memory, calculates the address of PTE2, and then sends a
‘distributed page-table-walk’ request to the home node for
PTE2, Node 2 (operations 3 and 4, as described for FIG. 4A).
InFIG. 5A, however, the directory controller on Node 2, upon
probing its directory, determines that the requesting (Node 0)
is caching a copy of PTE2 in its data cache. Hence, Node 2’s
directory controller sends a distributed page-table walk
request to Node 0 (operation 5). Upon receiving this request,
Node 0’s directory controller accesses PTE2 from its local
data cache (operation 6), uses PTE2 to calculate the address
of'the third-level PTE, and forwards a ‘distributed page-table-
walk’ request to PTE3’s home node, Node 3 (operation 7).
Note that, as described for FIG. 4A, the PTEs retrieved from
caches and DRAMs can be aggregated and forwarded to the
requesting node. In scenarios where a caching node receives
a request for a last-level page-table entry, the caching node
may also be configured to perform the final step of address
translation and send the translation information to the
requesting node. Note also that while FIG. 5A does not illus-
trate all of the many possible arrangements of cached and
non-cached PTE combinations, this example illustrates how
such scenarios can be resolved.

The timeline in FIG. 5B illustrates the critical path of the
exemplary page-table walk of FIG. 5A. The total latency on
the critical path of the memory operation is given by:

T iticar™ Lpagetavtewatrert Lo treqt ToRare Loreg

Toache_acetTi3reqgt TDRAMY T 12B_ resp
where T_, s 4. 18 the time needed for: (1) a directory con-
troller to determine that a PTE is cached in another node’s
local data cache; (2) the directory controller to send a PTE-
read request to the caching node; and (3) the directory con-
troller on the caching node to access the data cache on the
caching node. Note that the time needed to transfer the
request to the caching node and access the caching node’s
data cache is typically much less than the time needed for a
DRAM access.

Note that while FIGS. 3-5 illustrate examples for a three-
level page-table walk, the disclosed techniques are not limited
to such page-table organizations. More specifically, the dis-
closed techniques can be applied to multi-level page-table
organizations, hash-based page-table organizations, and
other page-table organizations. In the preceding examples,
each of the sequentially dependent PTE accesses is an access
to a PTE in a specific level of the page table, and the disclosed
techniques can operate in the same manner with page tables
that comprise fewer or more levels by repeating the key steps
of acquiring the current PTE, calculating the next PTE’s
address, and forwarding the request to the next home node as
often as needed. In a hash-based page-table organization, the
term ‘PTE’ instead refers to an element in a linked list that is
identified using a hash of the virtual address, and accessing
level i refers to examining the list element at position i in that
linked list. Note that while the number of levels in a multi-
level page table is typically fixed, the length of a given linked
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listin a hash-based page table may vary (e.g., be as low as one,
or substantially higher than the number of levels in a compa-
rably sized multi-level page table). The performance benefits
of the disclosed techniques increase as the number of PTE
lookups for a page-table walk increases.

In some embodiments, the format and contents of a ‘dis-
tributed page-table-walk’ request and a ‘completed distrib-
uted page-table-walk’ message depend on the hardware archi-
tecture and/or the underlying page-table organization. For
instance, for a multi-level page-table organization (e.g., as in
the x86 architecture), a ‘distributed page-table-walk’ request
may comprise: (1) the virtual address being translated; (2) the
address of'the PTE needed to access the next level of the page
table; and (3) the PTEs retrieved from the preceding page-
table levels for the virtual address. In contrast, a ‘distributed
page-table-walk’ request for the previously described hash-
based page-table organization may comprise: (1) the virtual
address being translated; (2) the address of the element in the
linked list currently being accessed; and (3) the contents of
the elements of the linked list of PTEs that have already been
accessed. In both organizations the ‘completed distributed
page-table-walk’ message includes all of the PTEs accessed
during the page-table walk (e.g., the PTEs accessed at all
levels of the page table in the multi-level organization, or all
of the nodes of the linked list that were accessed during the
page-table walk in the hash-based organization).

In some embodiments, the disclosed techniques involve
adding additional computational structures to a processor
and/or directory controller chip. For instance, an additional
arithmetic logic unit (ALU) may be added to each node to
support the described PTE address calculations. In some
alternative embodiments, existing hardware structures (e.g.,
existing processor ALLUs) may be leveraged for PTE address
calculations. Adding an additional ALLU may involve minimal
additional area while ensuring that no additional load is put on
existing structures. A separate, additional AL U may also be
beneficial for system architectures in which address compu-
tation occurs on a separate directory controller chip that does
not have such processing capabilities.

In some embodiments, the logic needed to calculate the
address of a PTE may also depend on the hardware architec-
ture and/or the underlying page-table organization. For
instance, in a multi-level page-table organization the address-
computation logic may combine a subset of the bits from the
virtual address with an address for the next level page table
(that is specified in the PTE of the current level) to calculate
the address of the PTE in the next level. Alternatively, in the
hash-based page-table organization, the address-computation
logic may instead resolve a ‘pointer’ in a linked list element as
a fixed offset (e.g., an offset set by the operating system at
boot time) from the address of a current element.

Note that FIGS. 1-5B illustrate a coherent shared-memory
system with generic page-table walkers. In some embodi-
ments, the disclosed techniques can be applied to systems
with either hardware or software page-table walkers.

FIG. 6 presents a flow chart that illustrates the process of
performing distributed page-table lookups in a shared-
memory multiprocessor system with two or more nodes,
where each of these nodes includes a directory controller that
manages a portion of the system’s address space. During
operation, a first node receives a request for a page-table entry
located at a physical address that is managed by the first node
(operation 600). The first node accesses its directory control-
ler to retrieve the page-table entry (operation 610), and then
uses the page-table entry to calculate the physical address for
a subsequent page-table entry (operation 620). The first node
determines the home node (e.g., the managing node) for this
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calculated physical address (operation 630), and sends a
request for the subsequent page-table entry to that home node
(operation 640). The disclosed distributed page-table-lookup
techniques distribute each level of the page-table walk’s PTE
accesses and address calculations to the directory controllers
of the nodes involved in a given page-table walk, thereby
reducing address-translation latency by reducing the commu-
nication overhead for page-table walks.

3. Considerations for Distributed Page-Table Lookups

Note that the disclosed distributed page-table-lookup tech-
niques are distinct from other techniques that attempt to
reduce page-table-walk penalties. For instance, some page-
table-access techniques use data and page-table replication in
an attempt to ensure that, on average, needed pages will more
likely be local to a requesting node, thereby reducing the
average latency of a physical memory access. However, such
replication/migration techniques lead to additional memory
and interconnect traffic overhead. In contrast, the disclosed
distributed page-table-lookup techniques do not require any
additional movement of page tables between nodes.

Another set of techniques that attempt to reduce page-
table-walk overhead involve “translation caches” that seek to
avoid memory hierarchy accesses in the event of a page-table
walk by either caching individual levels of page tables or
storing sets of intermediate page-table entries for a given set
of translations. Upon initiating a page-table walk, such sys-
tems check these caches to determine whether translation
information is being cached for the virtual address that needs
to be translated. However, such techniques require additional
hardware cache structures to store this intermediate transla-
tion information. In contrast, the disclosed distributed page-
table-lookup techniques do not involve storing additional
translation data, and hence do not require additional hardware
structures and logic to maintain page-table consistency.

Some techniques attempt to reduce page-table-walk over-
head by attempting to predictively pre-fetch translation data
before it is needed by a processor performing a page-table
walk. However, pre-fetching techniques can introduce syn-
chronization overhead (among multiple nodes) as well as also
introduce false accesses that waste power and communication
bandwidth. In contrast, the disclosed distributed page-table-
lookup techniques do not pre-fetch, but instead perform
memory accesses for page-table walks on an on-demand
basis.

Note that distributed page-table-lookup techniques can be
used in conjunction with a range of coherence protocols (e.g.,
the MOESI cache coherence protocol) that maintain cache
coherence across the nodes; more specifically, the described
techniques can build upon any cache coherence protocol that
facilitates maintaining coherence across multiple caches.
Note also that, as mentioned previously, the architectures
illustrated in FIGS. 1-5B are exemplary; the described tech-
niques and structures are not limited to the described shared-
memory systems, and can be applied to a range of architec-
tures.

In summary, embodiments of the present invention distrib-
ute remote memory reads and address calculations to reduce
the serialization latency experienced during a page-table walk
on a CC-NUMA system. PTE accesses and address calcula-
tions for each of a page-table walk’s levels are distributed
across the directory controllers of the nodes involved in a
given page-table walk, thereby eliminating intermediate
response messages and improving page-table-walk perfor-
mance. Specific advantages of the disclosed techniques
include:
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eliminating intermediate PTE response messages during a
page-table walk, thereby reducing the page-table-walk
critical path latency by hundreds of cycles;

involving only logic changes to a shared-memory sys-
tem—no additional hardware storage structures are
required;

not requiring any application-level changes;

not requiring any operating system changes for processors
with hardware page-table walkers;

being general enough to be implemented across a range of
operating systems and hardware platforms with differ-
ent page-table organizations.

4. Computing Environment

In some embodiments of the present invention, distributed
page-table-lookup techniques can be incorporated into a wide
range of computing devices in a computing environment. For
example, FIG. 7 illustrates a computing environment 700 in
accordance with an embodiment of the present invention.
Computing environment 700 includes a number of computer
systems, which can generally include any type of computer
system based on a microprocessor, a mainframe computer, a
digital signal processor, a portable computing device, a per-
sonal organizer, a device controller, or a computational
engine within an appliance. More specifically, referring to
FIG. 7, computing environment 700 includes clients 710-712,
users 720 and 721, servers 730-750, network 760, database
770, devices 780, and appliance 790.

Clients 710-712 can include any node on a network that
includes computational capability and includes a mechanism
for communicating across the network. Additionally, clients
710-712 may comprise a tier in an n-tier application archi-
tecture, wherein clients 710-712 perform as servers (servic-
ing requests from lower tiers or users), and wherein clients
710-712 perform as clients (forwarding the requests to a
higher tier).

Similarly, servers 730-750 can generally include any node
on a network including a mechanism for servicing requests
from a client for computational and/or data storage resources.
Servers 730-750 can participate in an advanced computing
cluster, or can act as stand-alone servers. For instance, com-
puting environment 700 can include a large number of com-
pute nodes that are organized into a computing cluster and/or
server farm. In one embodiment of the present invention,
server 740 is an online “hot spare” of server 750. In other
embodiments, servers 730-750 include coherent shared-
memory multiprocessors.

Users 720 and 721 can include: an individual; a group of
individuals; an organization; a group of organizations; a com-
puting system; a group of computing systems; or any other
entity that can interact with computing environment 700.

Network 760 can include any type of wired or wireless
communication channel capable of coupling together com-
puting nodes. This includes, but is not limited to, a local area
network, a wide area network, or a combination of networks.
In one embodiment of the present invention, network 760
includes the Internet. In some embodiments of the present
invention, network 760 includes phone and cellular phone
networks.

Database 770 can include any type of system for storing
data in non-volatile storage. This includes, but is not limited
to, systems based upon magnetic, optical, or magneto-optical
storage devices, as well as storage devices based on flash
memory and/or battery-backed up memory. Note that data-
base 770 can be coupled: to a server (such as server 750), to a
client, or directly to a network.

Devices 780 can include any type of electronic device that
can be coupled to a client, such as client 712. This includes,
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but is not limited to, cell phones, personal digital assistants
(PDAs), smartphones, personal music players (such as MP3
players), gaming systems, digital cameras, portable storage
media, or any other device that can be coupled to the client.
Note that, in some embodiments of the present invention,
devices 780 can be coupled directly to network 760 and can
function in the same manner as clients 710-712.

Appliance 790 can include any type of appliance that can
be coupled to network 760. This includes, but is not limited to,
routers, switches, load balancers, network accelerators, and
specialty processors. Appliance 790 may act as a gateway, a
proxy, or a translator between server 740 and network 760.

Note that different embodiments of the present invention
may use different system configurations, and are not limited
to the system configuration illustrated in computing environ-
ment 700. In general, any device that includes two or more
processing nodes, a page table, and a coherent memory-shar-
ing architecture may incorporate elements of the present
invention.

In some embodiments of the present invention, some or all
aspects of distributed page-table-lookup techniques can be
implemented as dedicated hardware modules in a computing
device. These hardware modules can include, but are not
limited to, processor chips, application-specific integrated
circuit (ASIC) chips, field-programmable gate arrays (FP-
GAs), memory chips, and other programmable-logic devices
now known or later developed.

Note that a coherent shared-memory processor can include
one or more specialized circuits for performing the operations
of the above-described distributed page-table-lookup tech-
niques. Alternatively, some or all of the operations may be
performed using general-purpose circuits that are configured
using processor instructions. Also, while FIGS. 1-5B illus-
trate distributed page-table-lookup techniques as being inter-
nal to a processor and/or a directory controller chip, in alter-
native embodiments some or all of these mechanisms can be
external to a processor and/or a directory controller chip.

In these embodiments, when the external hardware mod-
ules are activated, the hardware modules perform the methods
and processes included within the hardware modules. For
example, in some embodiments of the present invention, the
hardware module includes one or more dedicated circuits for
performing the operations described above. As another
example, in some embodiments of the present invention, the
hardware module is a general-purpose computational circuit
(e.g., a microprocessor or an ASIC), and when the hardware
module is activated, the hardware module executes program
code (e.g., BIOS, firmware, etc.) that configures the general-
purpose circuits to perform the operations described above.

The foregoing descriptions of various embodiments have
been presented only for purposes of illustration and descrip-
tion. They are not intended to be exhaustive or to limit the
present invention to the forms disclosed. Accordingly, many
modifications and variations will be apparent to practitioners
skilled in the art. Additionally, the above disclosure is not
intended to limit the present invention. The scope of the
present invention is defined by the appended claims.

What is claimed is:

1. A method for performing distributed multi-stage page-
table lookups in a shared-memory multiprocessor system
with two or more processors, the method comprising:

receiving, at a first processor, a request for a page-table

entry, wherein the request is associated with a multi-
stage address translation operation that was initiated by
a requesting processor that is distinct from the first pro-
cessor, wherein the multi-stage address translation
operation comprises multiple sequentially dependent
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memory accesses for multiple page-table entries that
include the page-table entry, wherein the request
includes a physical address for the page-table entry, and
wherein the first processor includes a directory control-
ler that manages a portion of the address space of the
shared-memory multiprocessor system that includes the
physical address;

accessing the directory controller to retrieve the page-table

entry;

using the page-table entry to calculate at the first processor

a subsequent physical address for a subsequent page-
table entry for the next stage of the multi-stage address
translation operation;

determining a home processor that manages the subse-

quent physical address;

sending a subsequent request for the subsequent page-table

entry to the home processor; and

sending a response from the home processor to the request-

ing processor, wherein the response comprises the sub-
sequent physical address and a final address translation
for the multi-stage address translation operation.

2. The method of claim 1,

wherein performing distributed page-table lookups

reduces address-translation latency by reducing the
communication overhead for the multi-stage address
translation operation.
3. The method of claim 2,
wherein a page table for the shared-memory multiproces-
sor system is organized as a multi-level page table; and

wherein multiple distributed page-table lookups are used
to hierarchically traverse the multi-level page table dur-
ing the multi-stage address translation operation.
4. The method of claim 2,
wherein a page table for the shared-memory multiproces-
sor system is organized as a hash-based page table; and

wherein multiple distributed page-table lookups are used
to sequentially traverse a linked list of page-table entries
in the hash-based page table during the multi-stage
address translation operation.

5. The method of claim 1, wherein the request additionally
includes aggregated information from previous stages of
page-table-entry lookups for the multi-stage address transla-
tion operation, wherein the aggregated information com-
prises physical addresses for the page-table-entries for the
previous stages of page-table-entry lookups,

wherein the subsequent request comprises the aggregated

information, and

wherein the response additionally comprises the physical

address and the aggregated information.

6. The method of claim 5, wherein the home processor uses
the subsequent page-table entry to obtain a final physical
address by performing a virtual-to-physical address transla-
tion for a virtual address that triggered the multi-stage address
translation operation, and wherein the response comprises the
final physical address.

7. The method of claim 1, wherein the directory controller
for the first processor is configured to send the aggregated
information to the home processor.

8. The method of claim 7,

wherein the subsequent page-table entry is the last page-

table entry needed to complete the multi-stage address
translation operation;

wherein the home processor uses the subsequent page-

table entry to perform a virtual-to-physical address
translation for a virtual address that triggered the multi-
stage address translation operation; and
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wherein the home processor sends the aggregated page-
table entries accessed during the multi-stage address
translation operation and the virtual-to-physical address
translation to the requesting processor.

9. The method of claim 2, wherein calculating the subse-
quent physical address further comprises using calculation
hardware in the directory controller of the first processor to
calculate the subsequent physical address.

10. The method of claim 2, wherein calculating the subse-
quent physical address further comprises using calculation
hardware in the page-table walker of the first processor to
calculate the subsequent physical address.

11. The method of claim 2, wherein the directory controller
is configured to distinguish address-translation requests and
responses from data coherence transactions.

12. The method of claim 2, wherein accessing the directory
controller to retrieve the page-table entry comprises at least
one of:

determining that the page-table entry is being cached by a

caching processor and forwarding the request to the
caching processor; and

accessing a DRAM in the first processor.

13. The method of claim 12, wherein forwarding the
request to the caching processor further comprises:

receiving the forwarded request at the caching processor;

accessing the page-table entry from a cache in the caching
processor;

calculating the subsequent physical address for the subse-

quent page-table entry in the caching processor;
determining the home processor in the caching processor;
and

sending the subsequent request from the caching processor

to the home processor.

14. A shared-memory multiprocessor that performs dis-
tributed multi-stage page-table lookups to reduce address-
translation latency, comprising:

a first processor; and

two or more additional processors;

wherein the first processor receives a request for a page-

table entry, wherein the request is associated with a
multi-stage address translation operation that was initi-
ated by a requesting processor that is distinct from the
first processor, wherein the multi-stage address transla-
tion operation comprises multiple sequentially depen-
dent memory accesses for multiple page-table entries
that include the page-table entry, wherein the request
includes a physical address for the page-table entry, and
wherein the first processor includes a directory control-
ler that manages a portion of the address space of the
shared-memory multiprocessor that includes the physi-
cal address; and

wherein the first processor is configured to:

access the directory controller to retrieve the page-table
entry,

use the page-table entry to calculate at the first processor
a subsequent physical address for a subsequent page-
table entry for the next stage of the multi-stage
address translation operation;

determine a home processor of the shared-memory mul-
tiprocessor that manages the subsequent physical
address; and

send a subsequent request for the subsequent page-table
entry to the home processor; and

10

15

20

25

30

35

40

45

50

55

16

wherein the home node is configured to send a response to
the requesting processor that comprises the subsequent
physical address and a final address translation for the
multi-stage address translation operation.

15. The shared-memory multiprocessor of claim 14,

wherein performing distributed page-table lookups
reduces address-translation latency by reducing the
communication overhead for the multi-stage address
translation operation.

16. The shared-memory multiprocessor of claim 15,

wherein a page table for the shared-memory multiproces-
sor is organized as a multi-level page table; and

wherein multiple distributed page-table lookups are used
to hierarchically traverse the multi-level page table dur-
ing the multi-stage address translation operation.

17. The shared-memory multiprocessor of claim 15,

wherein a page table for the shared-memory multiproces-
sor is organized as a hash-based page table; and

wherein multiple distributed page-table lookups are used
to sequentially traverse a linked list of page-table entries
in the hash-based page table during the multi-stage
address translation operation.

18. A directory controller structure that facilitates distrib-
uted multi-stage page-table lookups for a shared-memory
multiprocessor system with two or more processors, wherein
each processor chip of the shared-memory multiprocessor
system includes an instance of the directory controller struc-
ture,

wherein the directory controller structure for a first proces-
sor chip is configured to:

receive a request for a page-table entry, wherein the
request is associated with a multi-stage address trans-
lation operation that was initiated by a requesting
processor that is distinct from the first processor,
wherein the multi-stage address translation operation
comprises multiple sequentially dependent memory
accesses for multiple page-table entries that include
the page-table entry, wherein the request includes a
physical address for the page-table entry and the
directory controller structure for the first processor
manages a portion of the address space of the shared-
memory multiprocessor system that includes the
physical address;

retrieve the page-table entry from a DRAM associated
with the first processor;

use the retrieved page-table entry to calculate a subse-
quent physical address for a subsequent page-table
entry for the next stage of the multi-stage address
translation operation;

determine a home processor that manages the subse-
quent physical address; and

send a subsequent request for the subsequent page-table
entry to the home processor, and

wherein the home node is configured to send a response to
the requesting processor that comprises the subsequent
physical address and a final address translation for the
multi-stage address translation operation.
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